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Abstract

As two-dimensional fluid shells, lipid bilayer membranes resist bending and stretching but are unable to sustain shear
stresses. This property gives membranes the ability to adopt dramatic shape changes. In this paper, a finite element model
is developed to study static equilibrium mechanics of membranes. In particular, a viscous regularization method is pro-
posed to stabilize tangential mesh deformations and improve the convergence rate of nonlinear solvers. The augmented
Lagrangian method is used to enforce global constraints on area and volume during membrane deformations. As a val-
idation of the method, equilibrium shapes for a shape-phase diagram of lipid bilayer vesicle are calculated. These numer-
ical techniques are also shown to be useful for simulations of three-dimensional large deformation problems: the formation
of tethers (long tube-like extensions); and Ginzburg–Landau phase separation of a two lipid-component vesicle. To deal
with the large mesh distortions of the two-phase model, modification of viscous regularization is explored to achieve
r-adaptive mesh optimization.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Lipid membranes are a critical part of life because they serve as a barrier to separate the contents of the cell
from the external world. Lipid molecules are composed of a hydrophilic headgroup and two hydrophobic
hydrocarbon chains [1], and will form a bilayer structure spontaneously by the hydrophobic effect when intro-
duced into water in sufficient concentration. Though the cell membrane has more complex structure, being
littered with all kinds of proteins that serve as selective receptors, channels and pumps, in this paper we will
focus on closed spherical pure lipid bilayer membranes, i.e., vesicles.
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Common experience reveals that it is much easier to bend a thin plate than to stretch it (a good example is a
sheet of paper). This is also true for lipid bilayer membranes, except that there is no shear force because of the
fluid property of membranes. The mechanical energy of a lipid bilayer has three major contributors: bending
(curvature) of each monolayer; area or in-plane expansion and contraction of each monolayer; and osmotic
pressure. Because the last two energy scales are much larger than the first one (by several orders of magnitude)
[2], they effectively place constraints on the total surface area and enclosed volume of the bilayer membrane on
experimental time scales (up to at least 1 h). Thus, the mechanically interesting energy arises from bending of
the membrane.

Canham [3], Helfrich [4] and Evans [5] pioneered the development of the lowest-order bending energy the-
ory, often referred to as the spontaneous curvature model, in which energy is a quadratic function of the prin-
ciple curvatures and the intrinsic or spontaneous curvature of the surface. Incremental improvements to this
model include the bilayer couple model [6,7], which imposes the hard constraint on the area difference of
the two monolayers, and the area-difference-elasticity (ADE) model [8–10], which adds a non-local curvature
energy term representing an elastic penalty on the area difference.

The equations of equilibrium for the spontaneous curvature model, first calculated by Jenkins [11,12], are
difficult to solve being highly nonlinear fourth-order PDEs. The most common approach to modeling mem-
brane mechanics numerically has been to discretize a vesicle surface by a triangle mesh, and approximate the
curvature along mesh edges with finite-difference (FD) operators. Starting from some suitable initial shape, the
FD approximation of curvature energy can be summed on the triangulation, and an adjacent local minimum
then can be found by downhill minimization (often via a conjugate gradient algorithm) [13–16]. Another
mesh-based approach, the finite element method (FEM), was also recently applied to the study of membrane
mechanics by Feng and Klug [17], using C1-conforming triangular subdivision surfaces elements to approxi-
mate the membrane curvature energy.

One feature shared in common among these mesh-based methods is the need for stabilization of mesh ver-
tex motions tangential to the discretized surface. This issue arises as a fundamental consequence of the use of a
mesh for explicit coordinate parameterization of the geometry of a fluid membrane having no physically
meaningful reference configuration. As pointed out previously (e.g. [18,19]), the dependence of the curvature
energy functional on the surface position map is invariant upon changes in parameterization. Physically, this
implies that in-plane dilatational and shear modes of mesh deformation carry no energy cost, and therefore,
no stiffness. The addition of an artificial in-plane stiffness, for example by placing Hookean springs along the
edges of a triangular mesh [18] does indeed stabilize these motions, but in doing so also changes the physics,
yielding a model for a polymerized (rather than fluid) membrane. In order to allow for fluid-like diffusion of
membrane vertices, a number of researchers have used a dynamic triangulation approach, wherein the edge
connecting a pair of adjacent triangles along one of the diagonals between the four associated vertices is
swapped for the other diagonal. Within a Monte Carlo simulation framework this method yields mean-square
vertex displacements that are consistent with microscopic diffusion [20], and this approach has been shown to
produce an effective viscosity that increases as the edge swapping rate decreases [21]. However, it is unclear
whether the dynamic triangulation approach can enable unphysical in-plane forces to fully relax to zero in
a zero-temperature energy minimization context as is adopted here.

Alternatively, as shown in the finite element (FE) context [17], tangential vertex motions may be suppressed
partially by enforcing the incompressibility of the membrane as a local (rather than global) area constraint.
This approach also allows for diffusion of vertices; however, local enforcement of incompressibility can lead
to severe distortion of elements in the mesh, and therefore hinders the simulation of large vesicle deformations.
Furthermore, local incompressibility does not completely suppress spurious modes, and though these degen-
eracies do not prevent simulation of unforced vesicle equilibrium, they can lead to catastrophic numerical
instabilities when externally applied forces are introduced.

Notably, these issues may be avoided entirely through the development of meshless numerical methods for
membrane mechanics. Examples include, Ritz methods with global basis functions (e.g. spherical harmonics)
[3,22,23], phase field methods [24,25] and moving-least squares approximation [26]. Yet, these approaches are
not without their own limitations (e.g. aliasing, difficulty with application of external forces).

In this paper we propose a viscous regularization technique to stabilize tangential motions of nodes in a FE
membrane model while enforcing incompressibility as a global constraint. We demonstrate the computational
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efficiency and effectiveness of this approach by comparing simulation times with and without regularization
for shape transitions previously computed in [17]. Secondly, we examine the efficiency gained by enforcing
the global constraints on membrane area and volume with an augmented Lagrangian approach instead of
the previous penalty approach. Lastly, we apply the regularization and constraint methods to the simulation
of two membrane shape change problems involving large deformations and the application of external forces.
The first of these problems is the simulation of the tether instability in a vesicle under tension between two
opposing point forces; the second is the simulation of separation and domain formation in a two lipid-phase
vesicle. In the latter we demonstrate how the viscous regularization technique can be slightly modified to for-
mulate an r-adaptive remeshing method, wherein nodes ‘‘flow” on the surface of the vesicle in such a way as to
avoid element distortion.

The outline of this paper is as follows: Section 2 briefly introduces the FEM formulation for bilayer mem-
brane mechanics along with artificial viscosity mesh stabilization and augmented Lagrangian constraint
enforcement. Section 3 shows two applications: tether formation and lipid phase separation, based on the
methods described in Section 2. Section 4 concludes with discussions of results and future applications.

2. Methods

2.1. Lipid bilayer mechanics and finite element approximation

We begin with a brief review of the mechanics of bilayer membranes and FEM approximation we use. For
further details, the reader is referred to [17].

2.1.1. Membrane kinematics

The bilayer membrane is described as a two-dimensional surface M embedded in three-dimensional space
(Fig. 1), parameterized by curvilinear coordinates fs1; s2g, such that its position is given by the map
x : R2 ! R3. With standard definitions from differential geometry [27,28], we can span the surface tangent
plane with both (covariant) basis vectors aa ¼ ox

osa � x;a and dual (contravariant) basis vectors aa defined such
that aa � ab ¼ da

b. The covariant and contravariant surface metric tensors are then
aab ¼ aa � ab; and aab ¼ aa � ab; ð1Þ

and the determinant of the covariant metric tensor will be denoted
a ¼ det aab: ð2Þ

The normal to the surface is
d � a3 ¼
a1 � a2

ja1 � a2j
¼ a1 � a2ffiffiffi

a
p : ð3Þ
Fig. 1. Geometry of a surface.
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The curvature tensor B is defined by its covariant components
bab ¼ �d ;a � ab ¼ d � x;ab ¼ d � aa;b: ð4Þ

The mean curvature is one half of the trace of the curvature tensor
H ¼ 1

2
ba

a ¼
1

2
aabbab ¼ �

1

2
aabðd ;a � abÞ ¼ �

1

2
aa � d ;a ð5Þ
(where aabaab ¼ da
b), and the Gaussian curvature is the determinant of the curvature tensor
K ¼ det B ¼ det bab: ð6Þ
2.1.2. Lipid bilayer mechanics

We describe the energetics of the membrane by the Helfrich model [4], which assumes a strain energy of the
form
E½x� ¼
Z
M

1

2
KCð2H � C0Þ2

ffiffiffi
a
p

d2sþ
Z
M

KGK
ffiffiffi
a
p

d2s; ð7Þ
where KC is the bending modulus and KG is the Gaussian curvature modulus. By the Gauss–Bonnet theorem
[27], the integral of Gaussian curvature is a topological constant

R
M

K
ffiffiffi
a
p

d2s ¼ 4pð1� gÞ, with g being the
genus, i.e. the number of handles, and thus can be neglected.

The weak form of equilibrium for the membrane can be obtained in general by the principle of virtual work,
and for the case of conservative loads by minimization of total potential energy. The later dictates that the
total potential energy by stationary with respect to any arbitrary admissible surface variation dx
dP � dE � dW ext ¼ 0: ð8Þ

Here dE is the first variation of the membrane bending energy, and dW ext ¼

R
M

f ext � dx
ffiffiffi
a
p

is the virtual work
done by conservative external forces f ext. A straightforward calculation [17] gives the first variation of the total
energy as
dP ¼
Z
M

½na � daa þma � dd ;a � f ext � dx�
ffiffiffi
a
p

d2s; ð9Þ
where we have defined stress resultants na and moment resultants ma as
na ¼ KCð2H � C0Þaabd ;b þKC
1

2
ð2H � C0Þ2aa; ma ¼ �KCð2H � C0Þaa: ð10Þ
2.1.3. Enforcing constraints

Admissibility requirements on trial functions x and variations dx include the satisfaction of any active
constraints, such as the aforementioned constraints on total surface area and enclosed volume. Here we
will enforce these constraints with the augmented Lagrangian (AL) approach (see, e.g. [29]). The AL
method may be thought of as a hybrid between penalty and Lagrange multiplier methods. The basic
idea of AL is to solve iteratively for a Lagrange multiplier, computing multiplier updates from a penalty
term.

To enforce constraints on both area and volume of a membrane, we establish a sequence of modified energy
functionals, the nth of these taking the form In ¼ Pþ Icon, where Icon is a constraint energy term
Icon ¼ lV

2
ðV � V Þ2 � pnV þ lA

2
ðA� AÞ2 þ anA:
Here A and V are the specified surface area and enclosed volume of the membrane, lA and lV are penalty
parameters (large and positive), and an and pn are tension and pressure multiplier estimates for the nth itera-
tion. Minimization of the modified energy (holding multiplier estimates fixed) yields
dIn ¼ dP� pnþ1dV þ anþ1dA ¼ 0;
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where pnþ1 ¼ pn � lV ðV n � V Þ and anþ1 ¼ an þ lAðAn � AÞ are the updated multiplier estimates. Iteration of
minimization followed by multiplier updates is continued until constraints are satisfied to within some pres-
elected tolerance, TOL. In this way the modified energy converges to the pure Lagrange multiplier constrained
functional, with the added benefit of avoiding the associated saddle-point problem, retaining a minimization
structure which is convenient for nonlinear optimization algorithms.

Whereas pure penalty methods require very large penalty parameters for accurate constraint enforcement,
the AL iterative updates can achieve accuracy with much smaller penalty terms. In practice this is an impor-
tant advantage, since large penalty parameters lV and lA make numerical minimization difficult as the Hessian
r2E (or stiffness matrix) becomes ill conditioned [29]. Here, we follow common practice of incrementally
increasing the initially small penalty parameters by a factor, FAC, after each AL iteration to achieve faster
convergence.

2.1.4. Finite element approximation

A FE approximation is introduced by replacing the field x with the approximated field xh defined by
xhðs1; s2Þ ¼
XN

a¼1

xaN aðs1; s2Þ; ð11Þ
where the Naðs1; s2Þ; a ¼ 1; . . . ;N are shape functions of the FE mesh, and their coefficients, xa are the posi-
tions of the nodal control vertices. Introducing this approximation into the modified energy functional upon
minimization leads to a set of discrete approximate equilibrium equations
f int
a þ f con

a � f ext
a ¼ 0: ð12Þ
Here f int
a are the internal nodal forces due to bending of the membrane,
f int
a ¼

Z
M

na � oaa

oxa
þma � od

oxa

� �
;a

" # ffiffiffi
a
p

d2s; ð13Þ
f con
a are the constraint nodal forces due to the pressure and tension that are conjugate to the constrained vol-

ume and area,
f con
a ¼ �pnþ1 oV

oxa
þ anþ1 oA

oxa
; ð14Þ
and f ext
a are the external nodal forces, due to the application of distributed loads on the surface,
f ext
a ¼

Z
M

f extNa ffiffiffi
a
p

d2s: ð15Þ
Note that the integrands of the global expressions for internal and constraint forces are described in more ex-
plicit detail in [17]. Following that work, we again employ C1-conforming subdivision surface shape functions
[30,31] along with second-order (three-point) Gaussian quadrature for the computation of element integrals.

2.2. Viscous regularization of tangential mesh deformation

In the curvature model, the energy is determined by the mean curvature which is a parameterization-inde-
pendent property of the surface shape, and thus is not sensitive to in-plane dilatational or shearing deforma-
tions of the surface FE mesh. Much like physical lipid molecules, FE nodes can flow freely on the deformed
surface. As discussed in [17], this fact is manifested in the appearance of degenerate, zero-stiffness, zero-energy
modes. Here we discuss the implementation of an artificial viscosity method designed to numerically eliminate
these degenerate modes.

For solid shells having both reference and deformed configurations, in-plane deformations (dilatation and
shearing) can thus be expressed locally in terms of first derivatives of the surface position maps of these two
configurations. In curvature model,a well-defined reference configuration does not exist since the energy is
only related to the deformed shape. The basic ingredients for stabilization of these tangential modes are
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the introduction of a reference configuration and an energy term elastically penalizing in-plane deformation
away from this reference state. However, to retain the physics of the original model, the addition of any
in-plane elastic energy must result in a variational problem possessing the same minimizing solution as the
original problem. In other words, the artificial in-plane energy must attain a value of zero when the entire
model is in equilibrium. To design an algorithm that achieves these goals, we define a sequence of variational
problems, minimizing a modified energy functional
In ¼ P½x� þ Icon½x� þ I reg½x; Xn�; ð16Þ

where the reference configuration Xn for the nth iteration is the deformed solution xn�1 of the previous iter-
ation. The form of the regularization energy I reg½x; X � can be chosen such that it vanishes when x ¼ X , to en-
sure that solutions xn converge to minimizers of the original unregularized problem with increasing n. This
regularization method is outlined below in the following algorithm.
Algorithm 1. Viscous regularization via reference updates

Set X 0 ¼ initial shape
Set n ¼ 0
repeat

Minimize In ¼ P½x� þ I con½x� þ I reg½x; Xn� ! solution; xn

Update reference: set Xnþ1 ¼ xn

n nþ 1
until I reg½xn; Xn� < TOL
Qualitatively, assignment of the reference configuration for each iteration to be the current configuration of
the previous iteration results in a type of algorithmic viscosity, producing forces that resist the motion of
nodes away from their position at each previous iteration. The quantitative details of this viscosity depend
on the particular form chosen for the in-plane regularization energy, I reg. Here we give two example forms,
the first derived from planar continuum elasticity theory and the second representing the mesh as a network
of viscous dashpot elements.

2.2.1. Continuum elastic regularization energy

Here we treat the in-plane deformation response for each regularization iteration as that of a two-dimen-
sional solid membrane. This local response can be modeled via a hyperelastic strain energy density, wðFÞ,
which is a function of the surface deformation gradient
F ¼ aa � Aa; ð17Þ

where Aa are the dual basis vectors on the reference surface, i.e., Aa � Ab ¼ da

b, where Aa ¼ Xn
;a. Thus, the reg-

ularization energy becomes
I reg½x; Xn� ¼
Z
M

wðFÞ
ffiffiffi
A
p

d2s: ð18Þ
To preserve objectivity, the strain energy is a function of F through implicit dependence on the invariants of
the surface-Right-Cauchy-Green deformation tensor C ¼ FT � F ¼ aabAa � Ab [32]. As C is a rank-2 tensor,
the two non-zero principal invariants are
I1 ¼ trðCÞ ¼ �aabaab; ð19aÞ

I2 ¼
1

2
f½trðCÞ�2 � trðC2Þg ¼ 1

2
fð�aabaabÞ2 � �aal�abmaabalmg � J 2: ð19bÞ
The strain energy density is thus a function of these two invariants
wðFÞ ¼ wðI1; I2Þ:

As a specific example, consider a strain energy function that decouples the dilatational, and shear responses, as
used by Evans and Skalak [33] to model the red blood cell cytoskeleton
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w ¼ k
2
ðJ � 1Þ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

area change

þ l
trðCÞ

2J
� 1

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

shear

:

Here k and l are stretching and shear moduli, respectively. It should be carefully noted that although we fol-
low here the formalism of solid mechanics, the reference configuration Xn is not permanent as for a solid;
rather the reference configuration is iteratively updated so that the resulting stresses may relax to zero.

2.2.2. Dashpot regularization energy

The viscous character of our proposed scheme is much more obvious when we compose the regularization
energy of contributions from Hookean springs placed along all element edges, namely,
I reg ¼
X

edge ab

k
2
ð‘ab � LabÞ2; ð20Þ
where ‘ab ¼ jxa � xbj and Lab ¼ jXn
a � Xn

bj are the lengths of the edge connecting mesh vertices a and b in the
deformed and current configurations, respectively. Differentiating this energy, the corresponding force on a
node a from the spring connecting it along an edge to node b can be obtained as
f ab ¼ kð‘ab � LabÞnab;
where nab is the unit vector pointing from node a to node b. Recalling that the reference configuration for the
nth iteration is the same as the deformed configuration of the n� 1th iteration, the magnitude of this force can
also be written as
fab ¼ kð‘n
ab � ‘

n�1
ab Þ:
This is easily identified as the backward-Euler time-discretization of the force–velocity relation for a viscous
dashpot
fab ¼ k
o‘ab

ot
;

Thus, iterative reference updates of the form Xn ¼ xn�1 have the effect of converting a network of springs into
a network of dashpots, clearly revealing the viscous character of the regularization scheme.

We have numerically implemented both the continuum elastic and dashpot regularization described here,
and although both forms are effective in practice we have preferred the dashpot approach for its simplicity,
efficiency and robustness. The remainder of the paper focuses on the use of this second approach, demonstrat-
ing its effectiveness in application.

3. Applications

3.1. Shape vs. reduced volume

Even in the absence of any externally applied loads, the two constraints on area and volume cause vesicles
to transition among a variety of interesting equilibrium shapes. Here some of the calculations performed in
[17] of the equilibrium shapes for different reduced volumes are repeated, as a first demonstration of the effec-
tiveness of viscous regularization.

Reduced volume m is a geometrical quantity defined as
m ¼ V

ð4p=3ÞR3
0

; ð21Þ
where R0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
A=4p

p
is the radius of a sphere with the area A of the vesicle, called the equivalent sphere radius.

Reduced volume is then written as
m ¼ 6
ffiffiffi
p
p

V

A3=2
: ð22Þ
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The reduced volume is the ratio of the current volume of the vesicle and the maximum volume that the current
total area of vesicle can ensphere. For a spherical vesicle, the reduced volume m ¼ 1; a vesicle of any other
shape has 0 < m < 1.

To compute the following results, the spontaneous curvature model is used with C0 ¼ 0. The modified
energy is computed with loop subdivision shell elements and second-order (three-point) Gaussian quadrature,
and minimized with the quasi-newton L-BFGS-B solver [34–36].

3.1.1. Viscous regularization

As a first assessment of the benefit of regularization, results are compared with the simulations done in [17],
in which local area and global volume constraints were performed by penalty method instead of AL method.
First, the same calculation of [17] is repeated; then the viscous regularization is added, with same kind of con-
straints (local area and global volume constraint) and penalty parameters (lA ¼ 104KC=R4

0 for local area con-
straint and lV ¼ 5� 104KC=R6

0 for global volume constraint).
The calculation starts from an initial ellipsoid shape which has a reduced volume m ¼ 0:914 (Fig. 2). In the

calculation, the area is fixed at its initial value and the volume is reduced in order to satisfy the constraint on m.
For each simulation, violation of the volume constraint subjects the vesicle to a large pressure according to the
penalty term in the functional. The energy is then relaxed by L-BFGS-B minimization and result in the equi-
librium shapes. The iteration of reference updates in Algorithm 1 is continued until the regularization energy is
sufficiently small, I reg=I < 10�5. In all the simulations, the same mesh, made up of 642 vertex nodes and 1280
elements, is used.
Fig. 2. Limit surfaces and control meshes of equilibrium shapes for m ¼ 0:9 and 0.8.
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The resulting equilibrium shapes for m ¼ 0:9 and 0.8 are shown in Fig. 2. Starting from the initial shape, the
equilibrium shape for m ¼ 0:9 is computed by minimizing the energy; then from the resulting m ¼ 0:9 shape,
setting m ¼ 0:8, the equilibrium shape for m ¼ 0:8 is computed. The computational cost with and without
the viscous regularization is listed in Table 1. As can be seen, the convergence rate is highly improved (almost
two orders of magnitude faster) with the viscous regularization while the resulting shapes are equivalent. For
different choices of spring constant k, the computational cost also varies. The computational cost has two con-
tributions: one is the iteration number for each minimization; the other is the number of reference updates
required to satisfy the convergence criterion I reg=I < 10�5. These both depend on k. For each minimization,
the larger k is, the smaller the iteration number will be. While for the number of reference updates, it is oppo-
site: the larger k is, the more reference updates needed. For example, to get the equilibrium shape m ¼ 0:9 from
the initial shape, k ¼ KC=R2

0 requires two reference updates, each of which costs � 1000 iterations for minimi-
zation; while for k ¼ 100KC=R2

0, there are 20 reference updates each costing � 250 minimization iterations. In
this case k ¼ KC=R2

0 works the best, but the optimal k depends on the specific problem. In the later sections on
tether formation, a much larger k ðk ¼ 1000KC=R2

0Þ is used.
In these calculations, the initial shape was set to be an ellipsoid, but starting from a perfect sphere does not

change the resulting equilibrium shapes. The only difference is in the number of iterations, i.e., the computa-
tional cost. In other words, as is typical for nonlinear equation solving in general, the closer the initial point is
to solution, the less the computational cost will be. However, for the case where there exist local minima of
energy, depending on the minimization algorithms used, initial shape can lead to different equilibrium shapes
corresponding to different minima. For example, the spontaneous curvature model has another stable equilib-
rium oblate shape for reduced volume m > 0:65 (see, e.g. [2]) corresponding to a local minimum. So if the ini-
tial shape is closer to an oblate shape, the L-BFGS-B minimization used here converges to the oblate instead
of the prolate shape. Of course, this is to be expected from any ‘‘greedy” descent algorithm like BFGS. Global
minimization requires a more robust (and less ‘‘greedy”) approach such as simulated annealing.

3.1.2. Global constraint enforcement

From the results described above, viscous regularization is shown to significantly lower the computational
cost when a penalty method is used to enforce the constraints on area and volume. However, regularization
also eliminates the need for local enforcement of incompressibility. Global constraints on area and volume can
be easily implemented via the augmented Lagrangian (AL) method which is generally more efficient than the
penalty method. Here, the shape change from the initial ellipsoid shape to the equilibrium shape of m ¼ 0:9 is
used to compare global enforcement of the constraint on membrane surface area with local enforcement.

Viscous regularization was used with both local and global area constraints. In all cases, the regularization
spring constant k was set to be k ¼ 10KC=R2

0, where R0 is the equivalent sphere radius of the vesicle and KC is
the bending modulus.
Algorithm 2. Hybrid algorithm combining global AL constraint enforcement with viscous regularization

Initialize: p0, a0, l0
V , l0

A, X 0 ¼ initial shape, �m ¼ 0:9 (the specified reduced volume)
Set n ¼ 0
repeat

Minimize In ¼ P½x� þ lV
2
ðV � V Þ2 � pnV þ lA

2
ðA� AÞ2 þ anAþ I reg½x; Xn� ! solution; xn

Update reference: set Xnþ1 ¼ xn

if jmn � �mj=�m > TOL1 then
AL Updates:

pnþ1 ¼ pn � ln
V ðV n � V Þ, anþ1 ¼ an þ ln

AðAn � AÞ
lnþ1

V ¼ ln
V � FAC, lnþ1

A ¼ ln
A � FAC

end if
n nþ 1

until jmn � �mj=�m < TOL1 and I reg½xn; Xn� < TOL2
Local enforcement of the area constraint was implemented with a penalty approach as discussed in the pre-
vious section. This calculation produced error in reduced volume of jm�0:9j

0:9
� 10�3. Calculations were then



Table 1
Viscous regularization improves the convergence rate of L-BFGS-B minimization. The first row kR2

0=KC ¼ 0, shows the results without the
viscous regularization, which are identical to the approach used in [17]

kR2
0=KC Total iterations (initial shape ? m = 0.9) Total iterations ðm ¼ 0:9! 0:8Þ

0 35,950 603,858
0.5 2304 287,825
1 1821 9482
10 2122 12,480
100 4776 79,038

k: Spring constant; R0: equivalent radius of the vesicle; KC : bending modulus.
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performed with Global enforcement of the area constraint, first using a global penalty method, and second
using the AL method. In both of the globally constrained calculations, penalty parameters and tolerances
were chosen to yield the same accuracy for reduced volume. For the AL implementation, viscous regular-
ization reference updates were included with multiplier updates in a single iteration loop as described in
Algorithm 2.

As shown in the Table 2, global constraint enforcement reduced the minimization iteration count by an
order of magnitude relative to local enforcement. For this modest level of accuracy the AL implementation
was only slightly more efficient than the global penalty implementation. For higher accuracy, jm�0:9j

0:9
� 10�6,

wherein the computational cost of local penalty enforcement was prohibitive, global AL enforcement was sig-
nificantly more efficient than global penalty enforcement.

3.1.3. Non-axisymmetric shapes

Although the shapes of previous example are in fact axisymmetric, the algorithms are fully three-dimen-
sional and can be applied to shapes lacking symmetry. To demonstrate this, the bilayer couple (BC) model
[6,7,37] instead of the spontaneous curvature model is used to calculate the equilibrium vesicle shapes over
a parameter range in which non-axisymmetric shapes appear as energy minimizers. The BC model modifies
the spontaneous curvature model by imposing an additional constraint on the total mean curvature
Table
Compu
metho

Accura

10�3

10�6

To ach
calcula
M ¼
Z
M

H
ffiffiffi
a
p

d2s; ð23Þ
which determines the area difference between the neutral surfaces of the two monolayers of bilayer vesicles.
The BC model is defined by the energy (Eq. (7)) together with the three constraints on area, volume and
total mean curvature. Hence, the reduced total curvature m ¼ M=R0 (with R0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
A=4p

p
the equivalent

sphere radius) is a third parameter, along with reduced volume and spontaneous curvature,controlling
the equilibrium shapes of vesicles, and resulting in some interesting non-axisymmetric configurations (e.g.
[2,22]).

For reduced volume m ¼ 0:8, four different equilibrium shapes were calculated corresponding to different
reduced total curvatures in the range 1:029 6 m=4p 6 1:126, using the same mesh and algorithm as in the pre-
vious calculations of the spontaneous curvature model. The resulting shapes, shown in Fig. 3, form a sequence
from axisymmetric prolate to non-axisymmetric ellipsoids to axisymmetric oblate, consistent with the traversal
across three regions of the equilibrium shape phase diagram in [38].
2
tational cost of penalty-based local area constraint enforcement vs. the global area constraint enforcement with the penalty and AL

ds

cy jm�0:9j
0:9 Number of iterations

Local penalty Global penalty Global AL

2122 436 425
– 9231 616

ieve the same accuracy, global enforcement requires far fewer total iterations than local enforcement. For higher accuracy, the
tion with local penalty enforcement was not completed due to excessive computational cost.



Fig. 3. BC model find different equilibrium shapes for reduced volume m ¼ 0:8. Different reduced mean curvature m corresponds to
axisymmetric prolate (a), oblate (d) shapes and non-axisymmetric ellipsoids (b) and (c).
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3.2. Tether formation

A point force acting on lipid membranes can pull out a long narrow tube commonly called a tether. This
can be done by using micropipettes (e.g. [23]), optical tweezers (e.g. [39]), or even growing microtubules inside
the vesicle [39]. The mechanical reason for formation of tethers lies in the lack of shearing modulus for mem-
branes. Elongating in one direction and contracting in the other to such a spectacular way like tethers mechan-
ically means extremely large shear deformations [40–43].

Since tether simulation involves very large deformations, the triangles in the finite element mesh are subject
to severe distortions. In practice, as elements become more distorted, the zero-energy tangential modes can
actually become numerically unstable (Fig. 4). Viscous regularization has to be added in order to suppress
these zero-energy modes. Furthermore, the critical force to pull out a tether is very sensitive to pressure
and surface tension. Numerically, this necessitates highly accurate enforcement of the volume and area con-
straints. For a penalty method this implies very large penalty parameters, which lead to conditioning prob-
lems. For this reason, here the augmented Lagrangian method is applied.

Starting from an initial equilibrium shape (prolate), tether development is simulated by incrementally
displacing nodes at the tips of the vesicle, and performing energy minimization resulting in the equilibrium
tethered shapes for each extension. However, even with the viscous regularization, the mesh can still be
distorted by the dramatic deformations experienced at larger extensions. Therefore, remeshing is per-
formed at intervals of the extension. Fig. 5 shows snapshots from a typical simulation for reduced volume
m ¼ 0:9.



Fig. 4. The equilibrium shape of a vesicle of reduced volume m ¼ 0:9 with external forces (�1 pN) applied at the two ends (forces not
shown), mesh without (left figure) and with (right figure) the viscous regularization. Note that the unstabilized mesh is subject to element
distortion even at small applied load.
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3.2.1. Applied forces

The reaction forces conjugate to specified end displacements can also be calculated by simply adding up all
internal forces of the fixed nodes (Eq. (13)). The force vs. end-to-end distance results for the vesicles in Fig. 5
are shown in Table 3, with r the radius of the tethers (lm) and bending modulus KC ¼ 15kBT [39]. Although
an exact analytical solution for the force–extension relation is not possible, a simple analytical estimate [41] is
used to compare with the computed results from the simulation. The estimate assumes that the thin tube
(tether) is pulled out from a sphere, and the sphere remains unchanged during the pulling (Fig. 6). The ana-
lytical estimated force and surface tension are given as [41]:
F ¼ 2pKC=r; ð24Þ
and the surface tension
a ¼ 0:5KC=r2: ð25Þ
As Table 3 shows, for well developed tethered shapes (end-to-end distance 11.6 and 12.8 lm, vesicle (e) and (f)
in Fig. 5), the computed results and analytical estimations are very close. It is a notable advantage that the
present simulation framework is also capable of force–extension calculations for shapes that are not as simple
as the schematic in Fig. 6.

3.3. Lipid phase separation

Membranes formed from different lipids can separate into distinct domains (phases) according to their
chemical properties, leading to the formation of buds [44,45]. Baumgart et al. [46] found that their experiments
are in good agreement with line tension theory [47–49], which treats domain interfaces as sharp with an inter-
face energy proportional to the length of the interface curve. Recently, a phase field computational model was
developed for multi-component vesicle membranes combined with the line tension theory [57]. One major
drawback of the line tension model is that it requires the system to be pre-phase-separated into well-defined
domains, preventing the consideration of composition dynamics. An alternative, smooth-interface approach,
based on traditional Ginzburg–Landau (GL) theory [50,51] can be used to also model phase separation [52–
56].

Here a GL model for a multi-component bilayer with two different lipids in equilibrium is formulated,
assuming that the vesicle is composed of a mixture of two lipids denoted A and B. In general, these two
lipid types may have different constitutive properties, as modeled by separate constitutive parameters:
fKðAÞC ;K

ðAÞ
G ;CðAÞ0 g for lipid A, and fKðBÞC ;K

ðBÞ
G ;CðBÞ0 g for lipid B. Let the local concentrations of the two

lipids be described by the concentration parameters cðAÞ; cðBÞ 2 ½0; 1� with cðAÞ þ cðBÞ ¼ 1. The local lipid
concentration at point s ¼ ðs1; s2Þ can then be described by an order-parameter field cðsÞ � cðAÞ, which
is referred to as the concentration field or phase field. The local constitutive properties of the membrane
can then be modeled as functions of the phase field with convex combinations of the pure phase
parameters:



Fig. 5. The tethering of a vesicle starting from a prolate of reduced volume m ¼ 0:9. (left) Limit surfaces of equilibrium shapes; (right)
control meshes. Number of nodes and elements: (a) 4202 nodes, 8400 elements; (b) and (c) 4682 nodes, 9360 elements; (d) 6202 nodes,
12,400 elements; (e) and (f) 8682 nodes, 17,360 elements. End-to-end distance: (a) 6.8 lm, (b) 8.2 lm, (c) 9.2 lm, (d) 10.2 lm, (e) 11.6 lm
and (f) 12.8 lm.
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Fig. 6. Schematic of the tethered shape.

Table 3
Computed and analytical estimated forces for each tethered shape

End-to-end distance (lm) 6.8 8.2 9.2 10.2 11.6 12.8
Computed tether radius (lm) n/a n/a 0.20 0.165 0.140 0.105
Computed force (pN) 0 1.41 1.76 2.14 2.72 3.68
Analytical estimated force (pN) n/a n/a 1.88 2.29 2.69 3.59
Computed tension (pN/lm) 0.05 0.43 0.71 0.98 1.60 2.93
Analytical estimated tension (pN/lm) n/a n/a 0.75 1.10 1.53 2.72

For the shape in Fig. 5c, the computed tether radius is not uniform along the extension direction, and r ¼ 0:20 lm is an estimate. As noted
in the text a bending modulus of KC ¼ 15kBT is used for all calculations.

Fig.
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KC ¼ cKðAÞC þ ð1� cÞKðBÞC ; ð26aÞ
KG ¼ cKðAÞG þ ð1� cÞKðBÞG ; ð26bÞ
C0 ¼ cCðAÞ0 þ ð1� cÞCðBÞ0 : ð26cÞ
Thus, rewriting the strain energy including explicit dependence of fields on surface position,
E ¼
Z
M

1

2
KCðsÞ½2HðsÞ � C0ðsÞ�2 þKGðsÞKðsÞ

� � ffiffiffi
a
p

d2s ð27Þ
where explicit dependence of the mechanical properties on surface coordinates s has been noted as a reminder
of the heterogeneity of the system.

One further modification to the energy functional is needed to build into the model of the physics of phase
separation [51]:
I ¼ E þ
Z
M

½DEwðcÞ þ �jrcj2�
ffiffiffi
a
p

d2s: ð28Þ
Here the normalized GL energy wðcÞ is a double-well potential such as
wðcÞ ¼ 16c2ðc� 1Þ2
0.5 0 0.5 1 1.5
c
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 (c
)

7. Double-well normalized GL energy wðcÞ ¼ 16c2ðc� 1Þ2 used to model phase segregation in a two-component lipid system.
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(see Fig. 7) which is minimized when the concentration c takes a value of either 0 or 1, corresponding to local
lipid concentration of either pure type A or pure type B. The parameter DE scales the height of the barrier
between the two minima of wðcÞ, and controls the energy cost of a domain interface. The second addition
to the energy describes short-range cooperativity between neighboring lipids. The parameter � is essentially
a length scale which will determine the width of the region of transition between phases. As � decreases to zero,
this region will limit to a curve where the concentration gradient can be non-zero. Inclusion of this penalty
term in the energy will then produce the effect of a diffuse line tension in the transition between regions of pure
phases.

The mechanics of the membrane are then dependent on both the shape of the vesicle and the lipid compo-
sition. Minimization of the total potential energy now yields two sets of Euler–Lagrange equations, one being
Fig. 8. Comparison of simulation and experiment for two component lipid phase separation. (a) and (b) have reduced volume m ¼ 0:98
and global concentration xB ¼ 0:89. (c) and (d) have m ¼ 0:76 and xB ¼ 0:56. Phase A ðc ¼ 0Þ is colored blue; phase B ðc ¼ 1Þ is colored
red. Scale bars are 5 lm. Experimental images are taken from the work of Baumgart et al. [46]. (For interpretation of the references in
color in this figure legend, the reader is referred to the web version of this article.)
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the equilibrium equations related to variations in the shape dx, and the other being a phase equilibrium equa-
tion related to variations in the concentration dc.

Using this GL framework for two-component vesicles, we simulated mechanical and phase equilibrium for
two vesicles from Fig. 2A and G in [46]. The first of these had reduced volume m ¼ 0:98 and phase B area frac-
tion xB ¼ ð1=AÞ

R
cdA ¼ 0:89; the second had m ¼ 0:76 and xB ¼ ð1=AÞ

R
cdA ¼ 0:56. Each simulation started

from an originally spherical mesh with two separate domains. For consistency with the experimental work of
Baumgart et al. [44,46], the bending moduli were set to K

ðBÞ
C � 10�19 J, KðAÞC ¼ 5KðBÞC , KG � �KC; the line ten-

sion taken as r � 10�12 N; and the equivalent radius of the vesicles set to R0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
A=4p

p
� 10 lm.

The GL theory [50,51] relates the two parameters DE and � to the line tension r and the width of the tran-
sition region between the two phases d via the scalings r 	

ffiffiffiffiffiffiffiffiffi
DE�
p

, and d 	 �=DE. Setting d ¼ R0=10, the given
value of line tension sets the values of the two GL parameters as DE ¼ 1000KðBÞC =R2; � ¼ 10KðBÞC .

As shown in Fig. 8, the simulated shapes and phase distributions agree qualitatively well with those of the
experiments. For the m ¼ 0:98 vesicle, the simulation captured the small cap seen in the experiment (Fig. 8a
and b). Similarly, the m ¼ 0:76 vesicle experiences a ‘‘necking” deformation at the phase interface in the equa-
torial region. As a result, the deformed mesh around the interface was heavily distorted when simulated using
the dashpot-style viscous regularization technique (Fig. 9a). Because the simulation starts from a sphere with
roughly equilateral triangle elements, the shape change of vesicle causes the elements in the interface region to
contract severely in the circumferential direction. This element distortion needs to be suppressed because it can
lead to inaccuracy and instability of the finite element simulation.

In order to retain a high-quality mesh after the deformation, the elements near the interface need to con-
tract in all directions so that they remain roughly equilateral, resulting in a greater density of elements than in
other parts of the vesicle. To tackle such large deformations, remeshing strategies are often needed. The vis-
cous regularization introduced in Section 2.2 makes an r-adaptive remeshing possible, since reference config-
Fig. 9. r-Adaptive regularization helps elements perform well in the interface ðm ¼ 0:76Þ.
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uration can be arbitrarily formulated to reposition the nodes of the mesh. Here, a slight modification of the
dashpot regularization method is proposed with a reference updating strategy that drives elements toward
equilateral shape.

Given an element of the mesh at regularization iteration n� 1 with area An�1, r-adaptive regularization at
step n is defined by placing springs on the three edges all of the same reference length
�‘n�1 ¼ 2

ffiffiffiffiffiffiffiffiffi
An�1ffiffiffi

3
p

s
;

i.e., the length of a side of an equilateral triangle of the same area An�1. Thus the regularization energy term for
each triangle is written as
En ¼
k
2

X3

i¼1

ð‘n
i � �‘n�1Þ2; ð29Þ
where the ‘i are the lengths of the element edges.
In principle this regularization energy could be applied to every element in a mesh. However, in practice

these iterative updates are slow to converge to a fully relaxed state (with zero regularization energy), and
depending on the regularization constant k and initial mesh quality the method can get stuck in a state with
finite energy stored in the springs. Indeed there is no clear interpretation of this modified form as a time-dis-
cretization of any viscous PDE, and therefore no theoretical guarantee of convergence of regularizing forces to
zero. Hence, to obtain such convergence in practice, this ‘‘equilateral” form of the dashpot regularization
should only be applied selectively to poorly shaped elements, and in such a way that once all elements attain
sufficient shape quality the standard viscous regularization can take over globally.

In our implementation, a shape criteria c is formulated to calculate different spring energy for different
elements,
c ¼ ð1=�‘2Þ
X3

i¼1

ð‘i � �‘Þ2:
Using this measure of shape quality, the regularization energy is defined for each triangle by
En ¼
k
2

P3
i¼1ð‘

n
i � �‘n�1Þ2; c large;

k
2

P3
i¼1ð‘

n
i � ‘

n�1
i Þ

2
; c small:

(
ð30Þ
In other words, if c is large (say, c > 1) for an element, it has poor shape and r-adaptive regularization is used
on that element; if c is small enough, reference lengths are updated from the deformed lengths of the previous
iteration as for the dashpot model described earlier. In practice, after several reference updates, all the ele-
ments attain a sufficiently small c and the regularization algorithm switches everywhere to the dashpot model.
The addition of r-adaptive regularization has the effect of initially ‘‘driving” the nodes around on the mem-
brane surface so as to achieve higher-quality element shapes.

In the present example of a phase-separated vesicle at m ¼ 0:76, this results in a finer mesh of smaller ele-
ment sizes near the interface area (Fig. 9b), consistent with the shrinking of the interface due to ‘‘line tension”

effects. Although the ‘‘equilateral” form of regularization triggered in this simulation by distortion of elements
near the interface initially produced unphysical tangential ‘‘driving forces” on the nodes, iterative reference
updating allowed an eventual switch to the purely viscous dashpot-type regularization and ultimate conver-
gence of tangential forces to zero. The simulated result is compared with the experimental data of Fig. 8 in
[46].

As a final note, when applying the r-adaptive scheme some attention should be paid in choosing a target
element quality – i.e., the tolerance for c in Eq. (30). In our experience, applying r-adaptive regularization
for c > 0:2 in all cases produced good quality meshes with regularization forces converging to zero after a rea-
sonable number of reference updates. More aggressive tolerances for c could perhaps lead to ‘‘locked in” reg-
ularization forces not converging to zero after a large number of reference updates. However, we have yet to
see such behavior from the method of Eq. (30).
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[40] B. Božič, S. Svetina, B. Žekš, Theoretical analysis of the formation of membrane microtubes on axially strained vesicles, Phys. Rev. E

55 (5) (1997) 5834–5842.
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